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Abstract

Music source separation is a unique task with powerful
applications both in the music production and music infor-
mation retrieval community. There are many commercially
available applications of music source separation available
with DJing as a primary motivation. However, there has
been very little exploration of the effect of noise on this task.
A practical problem to motivate this task would be a live
music situation in which a studio quality recording does not
exist, yet source separation is still desired for usage within
a secondary task. Simulating a live environment provides
both a practical motivation as well as novel challenges for
this task. We present a comprehensive study of noise’s effect
on music source separation using the Spleeter toolkit. Both
U-Net and Bidirectional LSTM neural architectures are ex-
plored as well as multiple variations of data augmentation
to improve source separation performance, measured us-
ing standard blind source separation metrics. Ultimately,
further work is needed to determine how to make music
source separation most resilient to noise as data augmen-
tation does not yield significant improvements within our
experiments.

1. Introduction

Music source separation is a special instance of audio
source separation involving the extraction of particular sub-
components of a musical track. The goal of this task is to
extract vocals and instruments from a given musical track, a
single stereo recording file. The goal of this source separa-
tion is to successfully extract individual components from
a musical track to be used either in musical production or
a music information retrieval based task. This work will
focus on the neural approach to this problem although sev-
eral alternative approaches do exist which rely exclusively
on signal processing. For training a neural network for mu-
sic source separation typically both a mixture file and each
musical component are provided as isolated audio files.
Training data usually consists of cleanly recorded individ-
ual tracks and their mix, produced in a studio. However,
we would like to extend this approach to music recorded in
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a noisy, live environment so that music source separation
is not limited to only studio quality recordings. This in-
troduces challenges of the noise present in a live setting,
mainly babble or cheering from a crowd, the additional
acoustic variety introduced by a live venue, as well as the
difficulty of separating vocals from crowd noise which both
consist of human speech.

2. Objectives

With the goal of extending music source separation to a
live or otherwise noisy environment in mind, we attempt a
comparison of neural networks resilience to noise for this
specific task. This extension requires placing noise into the
mixture audio to later be separated. Comparisons will be
primarily using the U-Net [9] and BLSTM [ 5] models pro-
vided with the Spleeter [8] toolkit. Additionally, in order
to improve upon a given network’s performance, we also
investigate several data augmentation methods in order to
train networks in a way which allows not only instruments
and vocals to be modelled but also so that any noise present
can be separated as its own unique component.

3. Background

Existing state-of-the-art methods for music source sep-
aration, as shown in the proceedings of Sisec 2018 [14],
are composed of mainly U-Net and Long short-term mem-
ory (LSTM) based models. Although U-Net was originally
proposed for usage within the task of image segmentation
it yields impressive results for this audio based task. Like-
wise, there are several approaches which also implement
DenseNet-like architecture with great success. In visually
derived approaches such as U-Net, typically the spectro-
gram from training audio is modelled in the same way as a
2-D image. However, more recently approaches have begun
to use only 1-D input waveforms in the temporal domain as
well. This also allows for approaches that differ from the
typical separation method of spectrogram masking.

The task of ranking music source separation networks
is also not always straightforward. Despite the most com-
monly used metric Source to Distortion Ratio (SDR) being
a singular statistical indication of performance, this metric



varies across networks in terms of the instrument or musi-
cal component being separated, e.g. vocals, drums, bass,
or other. Mean opinion scores (MOS) may be best suited
to evaluate results from this task but due to the size of
the dataset and both the noisiness and time requirements
of human evaluation this is often not performed. Addi-
tionally, approaches achieving state of the art approaches
on our dataset of interest, MUSDB18 [12], almost all use
extra training data from private datasets often unavailable
to the public due to copyright restrictions. Although there
are currently some state-of-the-art approaches performing
among the top 10 music source separation systems which
only use MUSDB 18 data, this does provide a difficult chal-
lenge due to the relatively small amount of training data in-
cluded and is often addressed with simply adding external
training datasets. Lastly, as far as we have found, there is
no existing work which addresses the affect of noise on this
task.

4. Approach

In order to quickly test various networks as well as the
effect of different data augmentation regimes, we choose to
use the Spleeter toolkit [8], created by the music stream-
ing platform Deezer. For each part of a song provided as
a .wav file, a spectrogram is calculated to be used for in-
put to the network with the following parameters: frame
length = 4096 samples and step size = 1024 samples.
With the MUSDB dataset provided with a sampling rate
of 44.1kHz, these values correspond to roughly 0.1 and
0.025 seconds respectively. These values are fairly typ-
ical for music-related processing, perhaps slightly on the
longer end. While speech recognition processing usually
uses smaller frames, most music-related applications re-
quire a finer frequency analysis, particularly for lower fre-
quencies which are not of much interest for speech recog-
nition but contain valuable information for discriminating
between a bass guitar and bass drum for example.

The Spleeter pipeline accepts these spectrograms as in-
put and models each instrument or component’s frequency
mask with a U-Net or BLSTM. Therefore, for our exper-
iments separating the music into vocals, drums, bass, and
other, 4 unique networks are trained. U-Net models are
trained with 12 layers, 6 encoding and 6 decoding with skip
connections while BLSTM models consist of 3 layers. In-
put to these networks is a 3-D tensor consisting of chan-
nels (left and right), time steps, and frequency bins. For the
purpose of our experiments, noise is treated as an “other”
component within the mixture. The loss used for training is
the L1-norm between masked input mix spectrograms and
source-target spectrograms and weights are updated by the
Adam optimizer. At test time, the mixture spectrogram is
masked to produce separation for a desired component.

Both U-Net and BLSTM networks were trained for mul-

tiple different update steps in order to see the baseline
performance and training behavior for each. Our initial
experiments showed the BLSTM began to overfit more
quickly than the U-Net and produced lesser performance
when trained for a greater number of training steps (40k
vs. 200k). In comparison, U-Net showed greater stability
in training and was initially chosen to be the primary net-
work for our experiments as it may more clearly show the
effect of our data augmentation procedures. However, upon
further testing of each model, both the U-Net and BLSTM
models show a similar trend in performance with data aug-
mentation. Therefore, results are presented for both models
with baseline as well as data augmented performance.

4.1. Database

The MUSDB18 database includes a training set of 100
songs and a test set of 50 songs. The songs are of different
genres, and the total duration of all 150 songs is around
10 hours. Each song is provided with their isolated drums,
bass, vocals and other tracks.

For training and testing the baseline U-Net and BLSTM
models, the original MUSDB18 training and test sets were
used. For our goal of extending music source separation
to noisy environments, cheering noise (around 2 hours)
and babble noise (around 8 hours) derived from multiple
Youtube videos [2, 4, 5, 3, 1] were mixed with MUSDB18
songs. In the specific task of testing trained models’ per-
formances on noisy songs, a new test set was created by
adding noise to the original MUSDB18 test set with a 12
dB signal-to-noise ratio (SNR).

For training the improved U-Net and BLSTM models, a
new training set was used. The new training set was created
by applying multiple data augmentation techniques on the
original MUSDBI8 training set. In the end, we expanded
100 training songs into 800 songs.

4.2. Data augmentation

Since the duration of training data from MUSDBI18 is
limited to less than 10 hours, expanding the dataset is
important and three particular data augmentation methods
were applied to see if the U-Net and BLSTM models’ per-
formance on noisy songs can be improved.

Method 1. Previous experiments showed that traditional
audio data augmentation methods such as time stretching,
pitch shifting, track scaling, and filtering have very limited
impact on music source separation results [11]. In most
cases, these data augmentation techniques even lowered the
separation performance. Among the traditional audio data
augmentation methods tested in [1 1], only channel swap-
ping (swapping the left and right channels of stereo songs)
achieves a stable improvement in some evaluation met-
rics without damaging the overall separation performance.
Improvements made from channel swapping was also ob-



served in [15]. Thus, along with another technique that has
been popular among music source separation tasks — ran-
dom mixing of instruments from different songs (also tested
in [15]), channel swapping is used in our first data augmen-
tation method.

The specific steps for generating new mixtures are as
follows: (1) Split original songs into pairs. (2) Each pair
has song 1 and song 2. Tracks from songs assigned as 1
are channel swapped. (3) Next, within each pair of songs,
two track types (out of bass, drums, vocals, other) are se-
lected. Tracks of the selected types are exchanged between
song pairs. (4) New songs are created by mixing the new
track combinations. An example of this method could be
of the form: new mixture = song 2 vocals + song 2 bass +
song 1 drums (channel swapped) + song 1 other (channel
swapped).

Method 2. Mix-audio data augmentation, a new audio
data augmentation method specifically designed for music
source separation tasks [13], is applied in method 2.
Different from previous remixing instruments methods that
remix tracks from different songs, this method randomly
mixes audio segments from different times of the same
track as an augmented segment for that track:

J
Smix = Z S_’j
j=1
where S;,j = 1,...,J are audio segments from the same
track, and J is the number of segments to be mixed. Our J
is set to either 2 or 3. Sy, is the mixed track. If S; are vo-
cals, then, their addition S,,,;,, is also vocals. The mix-audio
data augmentation provides a large amount combinations of
one source. A new song xmix is then created by mixing the
new mixed tracks S,,;, vocals, S,,;, drums, S,,;, bass, and
Smiz other. This augmentation method makes separating
tracks from mixtures even more challenging. Intuitively, a
system that is able to separate multiple vocals from a mix-
ture is also able to separate a single vocal from the mixture

[13].

Method 3. The last augmentation method is adding
noise to input songs. This is inspired by denoising autoen-
coders. Since our goal is to improve our model’s perfor-
mance on noisy songs, we want to force the networks to
learn to ignore noise while reconstructing tracks by adding
noise to the training mixtures. Noise files from our noise
dataset are used with varied SNRs.

Combination. The three data augmentation methods are
combined to expand the original MUSDBI8 training set.
The process is shown below in Fig. 1. In-song mixing refers
to method 2. Across song mixing refers to method 1.

add 10 dB SNR noise
add 12 dB SNR noise
100 MUSDB In/across song

training songs F mixing add 15 dB SNR noise [~ 800
songs for
add 10 dB SNR noise |——{ training/
validation
—_—add 12 dB SNR noise
add 15 dB SNR noise [—|

Figure 1. Data augmentation process

4.3. Training

The input training dataset is split into a sub training
set and a validation set using a percent ratio of 86%:14%.
During training, songs are further divided into 20 second
chunks and shuffled. Within each 20 second chunk, a sub
12 second segment is then randomly cropped. This is to en-
sure efficient spectrogram caching while keeping some ran-
domness in the selected segments [6]. The spectrograms of
these 12 second segments are the real inputs to the training
networks.

Specific configuration and parameters used for training
are as follows: learning rate = le~*, batch size = 4, max
training steps = 120k (for both baseline U-Net and aug-
mented U-Net), 41k (for baseline BLSTM) and 160k (for
augmented BLSTM). An NVIDIA GTX 1660 Ti (6 GB)
was used for training. The total training time was around
22 hours.

4.4. Evaluation

Instead of simply using SDR as our sole evaluation met-
ric, all of the three standard source separation measures
[16]-Signal to Distortion Ratio (SDR), Signal to Interfer-
ence Ratio (SIR) and Signal to Artifact Ratio (SAR) are de-
rived. Given estimated tracks t; and ground truth tracks ¢;,
where 7 = 1...4, SDR indicates how close t;- isto t;. SIR
indicates how discriminative t; is with all other ground truth
tracks. SAR indicates how much of the ground truth ¢; ¢’
has with relation to unwanted burbling artifacts.

The same evaluation method used in [11] is applied:
During evaluation, separated tracks from test songs are di-
vided into 1-sec segments, and SDR, SIR, and SAR are
computed for each 1 second segment using the Museval
toolbox by [14]. The median SDR, SIR, and SAR for each
track are then derived for each test song. After that, an-
other set of median SDR, SIR, and SAR are derived (from
the previously computed medians) for each track across all
songs. At the end, one SDR, one SIR, and one SAR are kept
per track.



5. Results & Analysis

The evaluation results of the baseline models in Table
1 and Table 2 show that SDR is generally better for the
BLSTM model, and SIR is better for the U-Net model. Al-
though SDR is most commonly chosen as the one metric
to evaluate source separation, BLSTM’s improved perfor-
mance in this respect does not directly translate to better
sounding results. BLSTM is however, able to train more
quickly than U-Net as it contains only 3 layers compared to
U-Net’s 12 layers and therefore may be preferable for some
applications for this reason.

After data augmentation, improvements can be seen in
bold in Table 1 and Table 2. There is a small improvement
in vocals SIR when it comes to the augmented U-Net model.
Comparing between the mix-audio approach shown in Ta-
ble 1 and the approach of simply adding noised training
data, there is not a clear improvement shown by the mix-
audio approach. This confirms the work of Pretet et. al [9]
in that typical approaches to data augmentation involving
waveform manipulations do not yield significant improve-
ments for the task of source separation.

Although separation metrics are on average less than for
the baseline evaluation, data augmentation does yield im-
provements particularly visible for Drums and Bass with the
BLSTM model. One issue for the BLSTM model is that, it
begins to overfit after certain amounts of training steps. This
phenomenon is extremely obvious in the Drums and Bass
parts of the networks. This may be caused by the lack of
regularization techniques used in the BLSTM model. Un-
like the U-Net model, which utilizes several dropout layers,
the BLSTM model only has three BLSTM layers. As men-
tioned above, from the augmented BLSTM results shown
in Table 2, we can see that even though the overall perfor-
mance of the model does not improve much on the noisy
dataset, the separation results for the bass track do improve
in general. This shows that data augmentation still helps
with overfitting problems in music source separation tasks.

Lastly, as shown by bolded numbers in the difference
column in Table 3, the BLSTM model without any data
augmentation is less affected by noise introduced to the test
set than the U-Net model. This result is generalized across
instrument or musical component suggesting the choice of
model may be more meaningful in terms of performance
than the method of data augmentation employed for this
task.

Additionally, upon evaluation of spectrograms resulting
from each separation, it seems that the network does not
prioritize frequency content much above 10 kHz. Although
the bulk of musical information is not carried above this fre-
quency range, it does contribute to the naturalness of sound,
especially vocals. This is likely due to the wider variation
in this frequency range in the case of vocals due to to micro-
phone choice, studio acoustics, and the upper timbral reg-

UNet
Base (120k) | Augmented (120k)

SDR 3.609 3.545

Vocals | SAR 3.812 3.461
SIR 9.381 9.775

SDR 4.187 4.132

Drums | SAR 4.956 4.764
SIR 9.493 9.487

SDR 3.792 3.565

Bass SAR 4.708 4.766
SIR 8.313 7.572

SDR 3.204 3.134

Other | SAR 4.133 4.163
SIR 5.698 5.358

SDR 3.698 3.594

Average | SAR 4.40225 4.2885
SIR 8.22125 8.048

Table 1. Baseline vs augmented U-Net models evaluation results
on noisy test dataset. The number 120k corresponds to the max
training steps taken to train the models.

BLSTM
Base (41k) | Augmented (160k)
SDR 3.833 3.724
Vocals | SAR 4.734 4.584
SIR 8.368 7.769
SDR 4.123 4.058
Drums | SAR 5.101 4.979
SIR 8.296 8.711
SDR 3.552 3.592
Bass SAR 4.954 5.084
SIR 6.69 6.862
SDR 3.446 3.337
Other | SAR 4.392 4.449
SIR 5.138 4976
SDR 3.7385 3.67775
Average | SAR | 4.79525 4.774
SIR 7.123 7.0795

Table 2. Baseline vs augmented BLSTM models evaluation results
on noisy test dataset. The numbers 41k and 160k correspond to the
max training steps taken to train the models.

ister of each individuals voice compared to the more eas-
ily recognizable and therefore learn-able harmonic structure
present below this range.

6. Conclusions

In summary, introducing noise that resembles a desired
separation component, in our case vocals, presents a very
difficult task. We confirmed that data augmentation does not
necessarily improve separation metrics when the original
dataset is small. Through various evaluations of both U-Net



Base UNet (120k steps) Base BLSTM (41k steps)

Plain Test Data | Noisy Test Data | Difference | Plain Test Data | Noisy Test Data | Difference

SDR 4.7 3.609 -1.091 4.516 3.833 -0.683

Vocals SAR 4.574 3.812 -0.762 5.45 4.734 -0.716
SIR 11.083 9.381 -1.702 10.028 8.368 -1.66

SDR 4.466 4.187 -0.279 4.321 4.123 -0.198

Drums | SAR 4.474 4.956 0.482 4.707 5.101 0.394
SIR 9.282 9.493 0.211 8.326 8.296 -0.03

SDR 3.784 3.792 0.008 3.504 3.552 0.048

Bass SAR 4.896 4.708 -0.188 5.087 4.954 -0.133
SIR 6.994 8.313 1.319 6.304 6.69 0.386

SDR 3.047 3.204 0.157 3.382 3.446 0.064

Other SAR 39 4.133 0.233 3.99 4.392 0.402
SIR 5.311 5.698 0.387 4.621 5.138 0.517

SDR 3.99925 3.698 -0.30125 3.93075 3.7385 -0.19225

Average | SAR 4.461 4.40225 -0.05875 4.8085 4.79525 -0.01325
SIR 8.1675 8.22125 0.05375 7.31975 7.123 -0.19675

Table 3. Baseline U-Net and BLSTM models evaluation results on plain vs noisy test dataset. The numbers 41k and 120k correspond to

the max training steps taken to train the models.

and BLSTM networks we found the latter to be generally
less affected by noise for music source separation within
our experiments although U-Net does achieve greater sepa-
ration performance for both bass and drums in some cases.
Lastly, despite the relatively standard separation metrics
employed, we found that these may not be fully indicative
of separation quality. Despite the statistical differences we
report between our baseline and augmented models, with
evaluation through listening it is difficult to say which is
better performing. Therefore, a human-based judgement
such as Mean Opinion Score (MOS) may be more useful
as a way to quantify the performance of music source sepa-
ration.

Future work involving music source separation with
noise could involve alternate sequential models such as
Gated Recurrent Unit (GRU) networks or a Transformer-
like architecture to utilise attention as a learning mecha-
nism. Although there are already some high performing
models of this type, we would also like to explore models
which perform separation using only the waveform domain,
for example: Demucs [7] or Conv-Tasnet [10]. Different
separation methodologies such as separating a music track
into just vocals, instrumentation, and noise could also be ex-
plored as well as implementing a cascaded system of sorts,
first feeding the mixture into a noise reduction network then
performing source separation on the de-noised output.
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