Speech and Machine Learning for Neurodegenerative Disease Analysis

Yi-Ting Tsai

Apr. 07, 2022

Overview

- Background
- Datasets
- **❖ Method 1: Speech analysis with GMM-UBM**
 - > Approach and results
- Method 2: Speaker Recognition Based neural network model – x-vector
 - > Approach and results
- Method 3: Accent recognition based neural network model – CNN and x-vector
 - ➤ Approach 1: Not finetuned + Leave-one-out
 - > Approach 2: Siamese network finetuned + 10-fold

Background – Parkinson's (PD)

Past machine learning approaches

- O Detection of detection of dysphonia and hypokinetic dysarthria.
- O Numerous studies have used Gaussian Mixture Model (GMM)-Universal Background Model to classify PD from healthy controls 80% +- accuracy on common Spanish corpus
- O Text-Dependent Utterance (TDU), Diadochokinetic (DDK), monologues and sustained vowel
- Deep learning approaches (also for Alzheimer's AD)
 - O Classification based on LSTM (TDU,DDK), CNN (sustained vowels)
 - O Speaker recognition based models to extract speaker embeddings then do classification
- Challenges
 - O Data size
 - O Very different performance across different corpus and speech tasks

NLS dataset recorded along with

handwriting (11 kHz), eyetracking (24 kHz)

- O DDK: /Pa-ta-ka/
- O Text-dependent: rainbowpassage
- Text-independent: wordcolor, cookiethief
- Neurovoz dataset used to validate our methods
 - O DDK: /Pa-ta-ka/
 - O Text-dependent: reading a passage

Method 1: Speech analysis with GMM-UBM

Feature Extraction

- MFCCs and their first and second derivatives Delta and Delta 2 are extracted.
- Extractions are done using the Python Librosa toolbox.
 - Firstly, all signals are resampled to 22050 Hz and normalized.
 - 13 MFCC coefficients, and frame size of 512 with a
 50% frame overlap.
- Feature vectors of dimension 39 are extracted.

Method 1: Speech analysis with GMM-UBM

- Data loaded and cleaned, <u>MFCC & Delta features extracted</u> for each speech recording
- <u>Background model</u> (UBM) trained using speech recordings from the LibriSpeech ASR corpus + Neurovoz (total duration of 292.2 mins used)
- GMM-UBM trained for each class using mean-only Maximum A Posteriori (MAP)
 adaptation of UBM (relevance factor = 16, number of mixtures = 16)

Method 1: Speech analysis with GMM-UBM

NLS DDK (12 controls, 21 PD, and 21 other at the time) experiment results using leave-

one-out cross-	validation					
		PD vs ND vs CTRL	PD vs ND	PD vs CTRL	PD vs ND + CTRL	PD + ND vs CTRL
Speech only	Accuracy	38.89%	52.38%	39.39%	51.85%	63%
Оресси отпу	F1 macro score	0.378	0.519	0.365	0.484	0.518
Handwriting only -	Accuracy	40.35%	50%	50%	56.14%	73.68%
TSFresh	F1 macro score	0.3855	0.4905	0.4667	0.5	0.591
Handwriting only -	Accuracy	29.82%	36.36%	68.75%	48.29%	75%
biomarker	F1 macro score	0.276	0.3418	0.6761	0.3532	0.604
Fusion - TSFresh	Accuracy	-	-	-	42.60%	74.07%
features + speech	F1 macro score	-	-	-	0.378	0.57
Fusion - biomarker features + speech	Accuracy	-	-	-	68.50%	69%
	F1 macro score		-	-	0.498	0.497
+ speech	Accuracy	25.93%	-	-	48.15%	72%
	F1 macro score	0.253	-	-	0.378	0.521

- GMM log-likelihood ratio classification with Neurovoz (PD 44, Ctrl 42)
 - Accuracy = 74.42%, F1 macro score: 0.7436
 - Past research with GMM-UBM + Rasta-PLP features best reaches 84±7% accuracy
- Our features and methods work much better in previously researched datasets, potential reasons?
 - Language, PD severity, face masks, instructions
 - Multitasking results in inconsistent patterns (eg. some controls speak slower than they should be able to too)
- The same trend exists in Method 2 and Method 3 as well

- Leave-one-out cross-validation
- X-vector: deep neural network (DNN) embeddings for speaker recognition, extracted using a pre-trained x-vector network (3.2% error rate to recognize thousands of speakers)
- PCA and PLDA: feature dimension reduction, then group transformed speaker embeddings of the same class together

NLS pataka results: 54 [PD-21, CTRL-12, AD-4, other-17]

NLS wordcolor: 75 [PD-28, CTRL-17, AD-4, other-26]

NLS rainbowpassage: 71 [PD-25, CTRL-17, AD-4, other-25]

NLS cookiethief: 73 [PD-28, CTRL-17, AD-4, other-24]

accuracy = 42.666666666

[[12 7 9]

network model – x-vector NLS wordcolor:

75 [PD-28, CTRL-17, AD-4, other-26]

Method 2: Speaker Recognition Based neural

<pre>[4 7 6] [9 8 13]] F1 macro score = 0.4200 accuracy = 47.887323943 [[9 4 12] [0 8 9] [6 6 17]] F1 macro score = 0.4715 accuracy = 36.9863013698 [[12 10 6] [5 9 3] [9 13 6]] F1 macro score = 0.36363</pre>		[11 6]] F1 macro score = 0.4946 accuracy = 71.830985915 [[39 15] [5 12]] F1 macro score = 0.6706	NLS rainbowpassage: 71 [PD-25, CTRL-17, AD-4, other-25] NLS cookiethief: 73 [PD-28, CTRL-17, AD-4, other-24]
	[[15 13] [5 12]] F1 macro score = 0.5982 accuracy = 69.047619047 [[18 7] [6 11]] F1 macro score = 0.6816	accuracy = 71.232876712 [[44 12] [9 8]] F1 macro score = 0.6198	accuracy = 62.068965517 [[18 10] [12 18]] F1 macro score = 0.6206
			accuracy = 48.148148148 [[11 14] [14 15]] F1 macro score = 0.4786 accuracy = 53.571428571
	accuracy = 53.333333333 [[12 16] [5 12]] F1 macro score = 0.5333		[[12 16] [10 18]] F1 macro score = 0.5303

accuracy = 58.666666666

[[38 20]

Test scores plotting & Neurovoz with limited data comparison

Neurovoz pataka results: 86 [PD-44, CTRL-42]

Neurovoz con results: 89 [PD-43, CTRL-46]

Test scores plotting & Neurovoz with limited data comparison PLDA Test scores

Neurovoz con results with limited data: 42 [PD-25, CTRL-17]

NLS rainbowpassage results: 71 [PD-25, CTRL-17, AD-4, other-25]

TSNE experiments

Neurovoz pataka results: 86 [PD-44, CTRL-42]

NLS pataka results: 54 [PD-21, CTRL-12, ALZ-4, other-17]

TSNE experiments

Neurovoz con results: 89 [PD-43, CTRL-46]

NLS rainbowpassage results: 71 [PD-25, CTRL-17, AD-4, other-25]

TSNE experiments

NLS rainbowpassage results: 71 [PD-25, CTRL-17, AD-4, other-25]

Best with PLDA+logis

x-vector features (Nx512) + retrained fully connected layer classifier (MLP classifier)

Neurovoz pataka results: 86 [PD-44, CTRL-42]

Hidden layer size	PD vs ctrl (F1 macro score)
(100,)	0.8138
(512,)	0.8371
(100,100)	0.8022
(512,512)	0.8372
Best with PLDA+logis	0.8827

Neurovoz con results. 65 [FD-45, CTNL-40]				
Hidden layer size	PD vs ctrl (F1 macro score)			
(100,)	0.8647			
(512,)	0.8532			
(100,100)	0.8410			
(512,512)	0.8191			

0.9101

Neurovoz con reculte: 80 [DD_43 CTRL 46]

NLS pataka results: 54 [PD-21, CTRL-12, ALZ-4, other-17]

Hidden layer size	PD vs ctrl (F1 macro score)	PD vs other (F1 macro score)
(100,)	0.3863	0.3318
(512,)	0.3717	0.3272
(100,100)	0.3863	0.3567
(512,512)	0.4063	0.3318
Best with PLDA+logis	0.6590	0.4974

NLS rainbowpassage results: 71 [PD-25, CTRL-17, AD-4, other-25]

Hidden layer size	PD vs ctrl (F1 macro score)	PD vs other (F1 macro score)
(100,)	0.6541	0.4041
(512,)	0.5654	0.3784
(100,100)	0.6816	0.4319
(512,512)	0.6326	0.4319
Best with PLDA+logis	0.6816	0.4786

NLS wordcolor results: 75 [PD-28, CTRL-17, AD-4, other-26]

Hidden layer size	PD vs ctrl (F1 macro score)	PD vs other (F1 macro score)
(100,)	0.6309	0.4821
(512,)	0.6120	0.5149
(100,100)	0.5558	0.4821
(512,512)	0.5817	0.4821
Best with PLDA+logis	0.5982	0.6206

Method 3: Accent recognition based neural network model – CNN and x-vector

Approach 1: Not finetuned + Leave-one-out

Same thing as Method 2, but instead of using an x-vector network pre-trained to recognize speakers to extract speech features from our data sets, we pre-train an accent recognition model

Accent recognition model training

 Dataset: VCTK (~15 hrs of speech from 22 English speakers, 31 American speakers, and 19 Scottish speakers), 3-class classification

CNN: AlexNet Best val acc: 0.545827

CNN: DenseNet161
Best val acc: 0.684695

X-vector network
Best val acc: 0.665885

Method 3: Accent recognition based neural network model – CNN and x-vector Approach 1: Not finetuned + Leave-one-out

Experiment Results (best-F1 macro score across different PCA_n)

	Neurovoz pataka	Neurovoz con	NLS pataka	NLS rainbowpassage
X-vector (speaker)	0.8827	0.9101	0.6590	0.6816
X-vector (accent)	0.6860	0.7525	0.6192	0.6198
DenseNet161 (accent)	0.8250	0.8650	0.6330	Needs to retrain

Neurovoz pataka: 86 [PD-44, CTRL-42]

Neurovoz con: 89 [PD-43, CTRL-46]

NLS pataka: 33 [PD-21, CTRL-12]

NLS rainbowpassage results: 50 [PD-25, CTRL-25]

Method 3: Accent recognition based neural network model — CNN and x-vector Approach 2: Siamese network finetuned + 10-fold

- Goal: Use Siamese Network to increase "training samples" so that we can finetune the pre-trained network with our NLS data
 - performance not good: 10-fold cross-validation reduces the number of training speakers compared to leave-one-out cross-validation
 - To be optimized

Method 3: Accent recognition based neural network model – CNN and x-vector

of ENGINEERING		Approach 2: Siamese network finetuned + 10-fol	
	Neurovoz pat	aka	NLS rainbo
AlexNet	accuracy = 54 [[22 20]	1.651162790	accuracy [[19 6]

owpassage = 62.0% [13 12]] [19 25]] F1 macro score = 0.61240

F1 macro score = 0.5459

Accent + AlexNet

Accent + DenseNet

fine-tuned

DenseNet

fine-tuned

accuracy = 59.302325581[[24 18] [17 27]]

F1 macro score = 0.5925accuracy = 61.627906976[[27 15] [18 26]]

F1 macro score = 0.6162accuracy = 67.441860465 [[30 12] [16 28]]

F1 macro score = 0.6742

[[12 13]

accuracy = 60.0%[7 18]] F1 macro score = 0.5941

accuracy = 54.0%

[[21 4]

[19 6]]

Retrain in progress

F1 macro score = 0.4945

References

- L. Berus, S. Klancnik, M. Brezocnik, and M. Ficko. Classifying parkinson's disease based on acoustic measures using artificial neural networks. Sensors, 19:16, 12 2018.
- L. Moro-Velazquez, J. A. Gomez-Garcia, J. D. Arias-Londo no, N. Dehak, and J. I. Godino-Llorente. Advances in parkinson's disease detection and assessment using voice and speech: A review of the articulatory and phonatory aspects. Biomedical Signal Processing and Control, 66:102418, 2021.
- Tomas Arias-Vergara, Juan Camilo Vásquez-Correa, Juan Rafael Orozco-Arroyave, Jesús Francisco Vargas-Bonilla and Elmar Nöth, "Parkinson's disease progression assessment from speech using gmm-ubm", Interspeech, pp. 1933-1937, 2016.
- Laureano Moro-Velazquez, Jorge Andres Gomez-Garcia, Juan Ignacio Godino-Llorente, Jesus Villalba, Juan Rafael Orozco-Arroyave and Najim Dehak, "Analysis of speaker recognition methodologies and the influence of kinetic changes to automatically detect parkinson's disease", Applied Soft Computing, vol. 62, pp. 649-666, 2018.
- LibriSpeech: an ASR corpus based on public domain audio books", Vassil Panayotov, Guoguo Chen, Daniel Povey and Sanjeev Khudanpur, ICASSP 2015
- Douglas A. Reynolds, Thomas F. Quatieri, Robert B. Dunn, Speaker Verification Using Adapted Gaussian Mixture Models, Digital Signal Processing, Volume 10, Issues 1–3, 2000, Pages 19-41,
- Palanisamy, Kamalesh & Singhania, Dipika & Yao, Angela. (2020). Rethinking CNN Models for Audio Classification.
- Yuni Zeng, Hua Mao, Dezhong Peng, and Zhang Yi. 2019. Spectrogram based multi-task audio classification. Multimedia Tools Appl. 78, 3 (February 2019)
- L. Moro-Velazquez, J. Villalba and N. Dehak, "Using X-Vectors to Automatically Detect Parkinson's Disease from Speech," ICASSP 2020 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 1155-1159
- Yamagishi, Junichi and Veaux, Christophe and MacDonald, Kirsten. CSTR VCTK Corpus: English Multispeaker Corpus for {CSTR} Voice Cloning Toolkit (version 0.92). University of Edinburgh. The Centre for Speech Technology Research (CSTR), 2019.
- Laureano Moro-Velazquez, Jorge Andres Gomez-Garcia, Juan Ignacio Godino-Llorente, and Najim Dehak, "A forced gaussians based methodology for the differential evaluation of parkinson's disease by means of speech processing," Biomedical Signal Processing and Control, vol. 48, pp. 205–220, 2019.